Ooobober.ru

Строй Материалы
23 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое щелевой кирпич

Что такое щелевой кирпич

Щелевой кирпич используется при возведении несущих конструкций и перегородок. Материал отличается от полнотелого камня низкой теплопроводностью и небольшим весом. Щелевой строительный кирпич, обладая высокой устойчивостью к перепадам температуры и влажности, может применяться в различных условиях для сооружения стен переносящих минимальное давление. Пустотелый кирпич не рекомендуется применять при строительстве фундаментов, цокольных и подвальных этажей.

Описание щелевого кирпича

Основные преимущества щелевого кирпича заключаются в его марке, которая характеризует прочность материала на изгиб и сжатие, морозостойкости, долговечности и способности препятствовать потере тепла. Полуторный щелевой кирпич считается достаточно экономичным строительным камнем, позволяющим снизить расход раствора и время, затрачиваемое на возведение конструкции.

Принимая решение какой купить щелевой кирпич, следует учитывать, что чем больше размеры камня, тем меньшее количество его используется в 1 м2. Например, двойной лицевой камень в два раза больше одинарного по габаритам, при этом разница в цене составит всего лишь на 50%.

Керамический щелевой кирпич отличается показателем прочности: от М 100 до М 200, где число после буквы «М» сообщает о прочности камня на сжатие и изгиб. Морозостойкость материала варьируется от F-15 до F-50 (то есть, камень выдерживает 50 циклов оттаивания), а влагопоглощение – от 8% до 20%. Выбор изделия зависит от требований проекта и целесообразности использования. Чтобы принять правильное решение, следует более подробно изучить свойства и характеристики строительного щелевого камня.

Двойной щелевой кирпич

Пустотелые кирпичи различаются между собой размерами и бывают:

  • одинарными;
  • полуторными (утолщенными);
  • двойными.

Размеры двойного щелевого кирпича, который является самым востребованным кладочным камнем в современном строительстве, позволяют существенно сэкономить время, затрачиваемое на сооружение объекта и количество раствора (около 40%). Высота камня равна высоте двух стандартных кирпичей с учетом раствора между ними: 250 х 120 х 140 мм.

Показатель прочности двойного щелевого изделия такой же, как у ординарного и полуторного и имеет стандартную величину: от М150 до М200. Оптимальным решение при покупке является двойной щелевой кирпич М 150, сохраняющий все характеристики, присущие данному виду материала, но имеющий более низкую стоимость.

Расход материала при кладке:

  • в полкирпича (на 1 м2) – 25, 7 штук;
  • на 1 м3 – 197,3 штук;
  • раствор на 1 м3 – 0,16 м3.

Расчет верен для слоя раствора толщиной 10 мм.

Полуторный пустотелый кирпич

Полуторный щелевой керамический кирпич маркируется M-150, F-50, и используется при сооружении внутренних перегородок и закладки проемов. Высота материала составляет 1,35 от высоты одинарного изделия. Пустотность материала составляет 35%, а его размер — 250x120x88 мм. Прочность камня варьируется от М150 до М200. Кладка щелевого кирпича полуторного позволяет сэкономить время, затрачиваемое на строительство конструкций и количество раствора.

  • в полкирпича (на 1 м2) – 39,2 штук;
  • на 1 м3 – 301,9 штук;
  • раствор на 1 м3 – 0,19 м3.

В основе расчета лежит толщина слоя раствора равная 10 мм.

Одинарный щелевой кирпич

Одинарный щелевой кирпич применяется для возведения внешних и внутренних стен под отделку облицовочным материалом или штукатуркой. Пустоты во время кладки не заполняются полностью раствором, что практически исключает появление «мостиков холода» и повышает теплоизоляционные показатели конструкций.

Маркируется материал М100 – М200, где число является показателем прочности на сжатие и изгиб. Кирпич обладает стандартным набором свойств, присущим щелевому строительному материалу: низкая теплопроводность (0,36-0,46 Вт/м °C), высокая морозостойкость и влагостойкость. Размеры щелевого кирпича одинарного 250x120x65 мм.

Расход материала при кладке:

  • в полкирпича (на 1 м2) – 51,3 штук;
  • на 1 м3 кладки – 394,5 штук;
  • раствор на 1 м3 – 0,2 м3.

Расчет выполнен для слоя раствора толщиной 10 мм.

Особенности применения материала

Облицовочный щелевой кирпич особенно популярен в регионах, где наблюдаются частые перепады температуры, и наиболее актуальной является проблема энергосбережения.

Строители, для обеспечения жителей комфортным и теплым жильем, должны возвести такую стену, плотность которой способствовала бы удержанию тепла. Проблемой в данном случае является большое количество кирпича, используемое для кладки толстых стен, которое приводит к увеличению нагрузки оказываемой строением на фундамент и общей стоимости строительных работ. В итоге, это негативно отражается на эксплуатационных характеристиках возведенного объекта, и ставит под сомнение экономическую обоснованность подобного строительства.

Отличным решением является применение рядового щелевого кирпича, обладающего необходимой легкостью, низкой теплопроводностью и долговечностью. Поризованный строительный камень, используемый для возведения стен и перегородок, позволяет добиться нужных теплоизоляционных и звукоизоляционных показателей без лишнего утолщения стен. При этом поры кирпича бывают различные: открытые вертикальные и замкнутые пустоты. Основными преимуществами изделия являются:

  • небольшой вес щелевого кирпича, показатель которого варьируется в зависимости от размера материала: от 2,3 кг до 4,7 кг;
  • доступная цена щелевого кирпича, при этом стоимость двойного изделия отличается от стоимости одинарного всего на 50%.

В основе изготовления материала лежат легкоплавкие глины. Показатель пустотности изделия достигает 35%, но следует учитывать, что чем он выше, тем более высоким качеством обладает материал.

Укладка керамических блоков

Отличительной особенностью малоэтажного строительства является широкий спектр используемых в нём строительных материалов. Это связано с небольшими нагрузками на фундаментное основание и несущие конструкции.

Для возведения стен в частной застройке могут использоваться дерево, кирпич, камень, бетон и т.д. При этом технологии в данном строительном сегменте постоянно обновляются, появляются новые материалы и способы возведения построек.

Одна из таких сравнительно новых технологий – кладка керамических блоков.

Виды строительной керамики

Строительная керамика изготавливается путём обжига глиняного концентрата, содержащего различные улучшающие добавки.

Благодаря своей прочности, долговечности и замечательным декоративным качествам, керамические элементы нашли самое широкое применение в различных сферах строительства.

Доступность и низкая стоимость промышленного сырья позволили наладить выпуск данного материала практически во всех регионах страны.

Плотный материал не полглощает так влагу, как пористый

Керамические строительные материалы подразделяются на несколько видов по своим техническим свойствам и назначению. По своей плотности они бывают:

  • плотными;
  • пористыми.

Плотные керамические изделия отличаются низким показателем влагопоглощения, составляющим порядка 5% от собственной массы. Поризованные материалы имеют внутри множество соединённых между собой пустот-каверн, поэтому они могут впитать в себя очень большое количество влаги – вплоть до 20% от собственного веса. Соответственно, плотные материалы являются более долговечными и устойчивыми к атмосферному воздействию.

Но в то же время, поризованные изделия обладают лучшими теплоизоляционными показателями, что позволяет существенно сэкономить на дополнительном утеплении.

По своему предназначению керамические строительные материалы бывают:

  1. Кровельные. К ним относятся различные виды черепицы.
  2. Напольные покрытия – кафельная плитка, керамогранит и т.д.
  3. Специального назначения – огнеупорная облицовка, трубы для прокладки коммуникаций (канализации, электрических и оптико-волоконных кабелей), теплоизоляционная защита (керамзит).
  4. Облицовочные – плитка для декоративной отделки стен, облицовочные кирпичи.
  5. Стеновые материалы – предназначенные для возведения несущих конструкций, прежде всего, стен зданий. К ним относятся керамические кирпичи и стеновые блоки.

Последнюю разновидность строительной керамики рассмотрим подробнее.

Технические характеристики стеновых материалов

По своему назначению и технологии укладки стеновые блоки и керамический кирпич полностью идентичны таким материалам, как строительный кирпич, шлакоблок, пенобетонный блок и т.д.

Технология кладки в данном случае обуславливается размерами и формой керамического материала. Небольшие элементы, приближённые по габаритам к обычному кирпичу, позволяют производить возведение стен методом стандартной кирпичной кладки. В этом случае они укладываются в несколько слоёв с перевязкой друг с другом во всех направлениях.

Крупногабаритные элементы, называемые стеновыми блоками, дают возможность укладывать их в один слой. Данная технология аналогична укладке шлако- и пеноблоков.

Пустоты, заполненные воздухом – теплоизоляционные камеры

Керамоблоки отличаются от кирпича не только своими размерами, но и технологией производства. В них, кроме глины, добавляется некоторое количество органических примесей, чаще всего опилок. Это позволяет уменьшить их теплопроводность.

Повышению теплоизоляционных качеств также служит и наличие внутри блоков пустот, заполненных воздухом. Так, стена из керамоблоков толщиной в 51 см обладает коэффициентом теплопроводности 3,3 м х К/Вт, что значительно меньше, чем у стены из полнотелого строительного кирпича или монолитного бетона.

Прочность на сжатие керамических блоков составляет от 75 до 100 кг/кв.см, у керамического пустотелого кирпича и малогабаритных блоков данный показатель ещё выше – до 100-150 кг/кв. см. Это позволяет возводить из них несущие стены одно- и двухэтажных построек.

В таблице даны технические характеристики различных видов керамических блоков.

На строительный рынок керамоблоки поставляются в нескольких стандартных вариантах размеров.

В зависимости от габаритов из них можно производить кладку стен в один слой толщиной от 25 до 51 см, то есть толщина получаемой несущей конструкции аналогична той, что получается при кладке с использованием строительных кирпичей (стандартный размер 24 на 12 см).

Узкие керамоблоки используются, как правило, для кладки стены в два и более слоёв. Кроме того, в продаже имеются и специальные доборные элементы, представляющие собой нестандартные блоки, как правило, укороченной длины – «половинки» и «четвертинки».

Преимущества и недостатки керамоблоков

Как показывает статистика, в странах Западной Европы с применением строительной керамики производится от трети до половины всей малоэтажной застройки. В нашей стране этот показатель пока составляет менее 10%, но имеет тенденцию к стабильному росту. Этому способствует целый ряд положительных качеств:

  1. Высокие теплоизоляционные качества материала позволяют возводить стены из него без использования дополнительного утепления. Так, стена толщиной в 44 – 51 см соответствуют по своим теплосберегающим свойствам нормативам СНиП для таких регионов, как Прибалтика, Поволжье, Центральное черноземье, не говоря уже о более южных районах. Данный аспект делает строительство из керамических поризованных материалов более выгодным в финансовом отношении.
  2. Простота и скорость укладки. Благодаря крупным габаритам блоков, строительство стены из них займёт намного меньше времени, чем кладка стандартного кирпича. Кроме экономии времени это даёт и значительную экономию кладочного раствора.
  3. Долговечность эксплуатации. Гарантированный производителем срок эксплуатации стены составляет порядка 50 лет, что не уступает аналогичным показателям для бетона или силикатного кирпича. При этом стоит учитывать, что в реальности этот срок может быть гораздо больше полувека.
  4. Малая масса. Благодаря наличию внутренних пустот, керамоблоки обладают гораздо меньшей плотностью, чем полнотелый кирпич или бетон. Это даёт возможность применять в строительстве облегчённые варианты фундаментов – столбчатые и свайные, что опять-таки ведёт к значительной экономии строительного материала и времени.
  5. Отличная шумоизоляция. Благодаря своей пористости, блоки не только имеют замечательные теплоизоляционные свойства, но и хорошее шумопоглощение.
  6. Огнестойкость. Поскольку глина является абсолютно негорючим материалом, стена из керамоблоков способна стойко противостоять распространению огня.
  7. В отличие от деревянных строительных материалов керамика не даёт усадки, поэтому к внутренней отделке можно приступать сразу же после завершения постройки.
  8. Паропроницаемость. Керамоблоки не препятствуют свободному газообмену между внутренними помещениями здания и внешним миром. В результате в помещениях создаётся комфортный микроклимат и предотвращается образование на внутренних поверхностях стен грибка и плесени. Подробнеее о строительстве из керамоблоков смотрите в этом видео:

Керамоблоки хрупки, поэтому необходимо с ними бережно обращаться во время погрузки и транспортировки

Как и все прочие строительные материалы, керамические блоки имеют и свои недостатки, которые обязательно следует учитывать при проектировании здания и проведении строительных работ.

Из-за своей структуры с внутренними пустотами керамические блоки неустойчивы к ударным нагрузкам, поэтому при их транспортировке и строительстве следует соблюдать осторожность. Кроме того, наличие пор обуславливает их высокую гигроскопичность.

Чтобы избежать излишнего увлажнения блоков и их последующего разрушения при замерзании влаги, следует не допускать во время строительства проникновения влаги во внутренние полости.

Технология кладки стен из керамоблоков

Кладка стен из керамических блоков производится по особой технологии, отличной от кирпичной кладки.

Приготовление кладочного раствора

При кладке стены из керамоблоков в один слой нельзя использовать обычный кладочный раствор, применяемый для кирпичей.

Дело в том, что застывший раствор обладает очень высокими показателями теплопроводности, создавая «мостики холода» – области в стене, по которым холод проникает внутрь здания. Таким образом, сводится на нет все теплоизоляционные свойства керамических блоков.

Технология приготовления раствора для керамики в общих чертах схожа с приготовлением обычного раствора. Связующим элементом в нём выступает цемент марки М-300 или М-400, но в качестве наполнителя вместо строительного песка в растворе используется керамзит, перлит мелкой фракции или измельчённая пемза. Приготовить кладочный состав можно как самостоятельно, так и купить готовую сухую смесь в строительном магазине. Разводится она путём добавления воды в пропорциях, указанных на упаковке.

Укладка первого слоя блоков

Первый слой блоков укладывается на фундаментное основание. Оно должно быть идеально ровным, в противном случае необходимо поверх него залить слой выравнивающей стяжки.

Перед началом кладки блоков между ними и фундаментом следует уложить гидроизоляционный слой.

Гидроизоляция предотвратит проникновение влаги из бетона в поры керамоблоков. Для её устройства обычно применяется рулонная гидроизоляция – рубероид и его аналоги.

После этого можно приступать непосредственно к укладке блоков. Кладка начинается с углов будущего здания. При помощи строительного уровня на раствор выставляются угловые блоки.

Толщина слоя раствора не должна быть слишком толстой или чересчур тонкой – согласно строительным нормативам, она составляет порядка 10 – 12 мм.

Каждый блок желательно смачивать водой, так он менее интенсивно впитывает влагу из раствора. В результате схватывание раствора происходит более равномерно без пересушки и прочих нарушений строительных технологий.

Для выравнивания и осаживания керамоблоков нельзя пользоваться каменщицкой киркой из-за хрупкости строительного материала. При работе с ними следует применять резиновые киянки.

После установки угловых блоков производим заполнение первого ряда.

Для этого между крайними керамоблоками натягивается тонкий шпагат, служащий ориентиром для установки остальных блоков.

При стыковке последних блоков ряда они могут не совпадать по своим размерам.

Для получения элемента нужного размера следует пользоваться болгаркой со специальным отрезным диском. Пытаться отколоть кусок нужного размера при помощи каменщицкой кирки не следует – керамика, скорее всего, расколется на множество частей.

Также можно приобрести специальные доборные элементы размером в ¼ или ½ от длины цельного керамоблока. По завершению кладки первого ряда следует дать раствору хорошенько схватиться. Обычно это занимает 12 часов, после чего можно приступать к кладке последующих рядов.

Дальнейшая работа

Все последующие ряды также начинают монтировать с углов, регулируя установку крайних блоков при помощи строительного уровня. Особое внимание следует уделять швам.

Они должны быть ровными и одинаковой толщины – от этого во многом зависит красота кладки. Вертикальные швы должны быть тщательно заполнены во избежание сквозных щелей.

Также следует соблюдать перевязку: вертикальные швы соседних рядов не должны совпадать друг с другом. Для достижения большего декоративного эффекта швы расшиваются при помощи слегка загнутого металлического прутка или трубки диаметром 10 мм. Обучение правильной укладке блоков смотрите в этом видео:

Через каждые 3 – 4 ряда необходимо укладывать кладочную сетку или арматуру диаметром 6 – 8 мм. Подобным образом производится возведение стен в соответствии с проектными чертежами. В нужных местах устраиваются проёмы для дверей и окон, вентиляционные отверстия и т.д.

После возведения стен можно сразу же приступать к обустройству кровли для защиты стен от атмосферных осадков.

Трехслойные стены: материалы и конструкции

Такие конструкции используются издавна, в них могут применяться различные материалы. Это уже упоминавшиеся ранее ячеистый бетон, керамзитобетонные и поризованные керамические блоки, а также материалы, которые по своим теплотехническим характеристикам не подходят для возведения однослойных или двухслойных стен – керамический и силикатный кирпич и камни. Благодаря своей конструкции трехслойные стены имеют хорошие теплотехнические характеристики, они хорошо аккумулируют тепло.

К сожалению, возведение таких стен является трудоемким процессом, поскольку каменщикам по сути приходится возводить два слоя кладки – несущий и отделочный. Кроме того, при работе с мелкоштучным кирпичом существенно увеличивается время возведения зданий.

Вместе с тем трехслойные стены, в случае использования традиционных материалов, получаются сравнительно толстыми и имеют обычно толщину от 50 до 65 см. Это несколько больше двух- и однослойных стен из эффективных конструкционных материалов. Такая особенность влечет за собой необходимость сооружения более широкого фундамента, перемычек, парапетов и соответственно увеличивает расход материалов на эти цели.

Кроме того, следует учитывать, что если в доме определенных размеров возвести более толстые стены, то полезная площадь внутренних помещений уменьшится. Если же для сохранения площади попытаться увеличить наружные размеры дома, то это обернется большим расходом материалов на возведение фундамента и крыши. А это – увеличение стоимости строительства.

Традиционная трехслойная стена состоит из следующих слоев. Несущий слой, который, как мы уже отметили, обычно выполняется из ячеистобетонных, керамзитобетонных или поризованных керамических блоков, керамического или силикатного кирпича (камней). Как правило, толщина несущего слоя составляет от 25 до 50 см. Толщина несущего слоя определяется прочностными требованиями к зданию.

В качестве внутреннего слоя могут быть использованы минеральная или стеклянная вата, плиты из экструдированного или обычного пенополистирола. В последнее время в качестве теплоизоляционного слоя все чаще используются блоки из ячеистого бетона пониженной плотности. Толщина внутреннего слоя определяется требованиями теплозащиты здания и обычно составляет 50–150 мм.

Одной из важных задач при проектировании трехслойных стен является удаление влаги, образующейся внутри конструкции. Как правило, с этой целью между утеплителем и лицевым слоем стены устраивается воздушный зазор, предназначенный для вентиляции и удаления конденсата. Ширина зазора определяется теплотехническим расчетом и обычно составляет 40–60 мм.

Кроме того, при использовании минераловатных плит в качестве утеплителя рекомендуется устраивать ветрозащиту в виде диффузионной пленки. В качестве варианта может быть использована минераловатная плита повышенной плотности. Для обеспечения эффективной вентиляции в швах лицевого слоя внизу и вверху стены монтируются вентиляционные элементы. Назначение лицевого слоя заключается в защите утеплителя от внешних воздействий и придании зданию необходимого архитектурного облика. По сути, лицевой слой в конструкции с вентилируемой прослойкой играет слой наружного слоя вентилируемого фасада.

Толщина слоя определяется прочностными характеристиками материала и составляет обычно 65–120 мм. Как правило, при возведении данного слоя используются материалы, не требующие дальнейшей отделки: лицевой керамический или силикатный кирпич, клинкер, натуральный или искусственный камень, декоративные блоки из тяжелого бетона.

Кирпич и блоки могут иметь как гладкую фактуру, так и колотую, которая напоминает фактуру дикого камня. Кроме того, силикатный кирпич и бетонные блоки могут быть окрашенными в массе, а керамический кирпич или клинкер – даже подвергается глазурованию. Это обеспечивает материалу низкий показатель водопоглощения и, следовательно, долгий срок службы.

В этой связи следует отметить, что силикатный кирпич, наоборот, обладает сравнительно высоким показателем водопоглощения. Поэтому при устройстве облицовочного слоя из этого материала все же стоит в элементах, наиболее подверженных воздействию влаги (цоколь, пояса, парапеты и т. д.), использовать, например, лицевой керамический кирпич.

В качестве наружного слоя иногда могут быть использованы ячеистобетонные блоки, рядовой кирпич или иные строительные материалы, которые требуют дальнейшей отделки, в частности, оштукатуривания и покраски. В этом случае используются традиционные декоративнозащитные штукатурки для наружных работ.

Однако такой вариант возведения трехслойной стены в конечном счете оборачивается дополнительными трудозатратами и увеличением расходов на материалы и отделочные работы. Стоимость лицевого кирпича в итоге оказывается ниже, чем цена рядового вместе со штукатуркой и краской. Также не стоит забывать, что оштукатуренные стены требуют больших эксплуатационных расходов в последующем.

Кстати, в рамках данного материала мы не будем рассматривать такие варианты отделки фасадов, как обшивка сайдингом или облицовка стен керамической или клинкерной плиткой, термопанелями. Данные варианты отделки широко используются не только при возведении трехслойных стен, но гораздо чаще однослойных и двухслойных. Поэтому такие методы внешней отделки фасадов индивидуальных домов требуют рассмотрения в рамках отдельной статьи.

Технология возведения трехслойной стены требует на первом этапе кладки несущего слоя, далее – крепления утеплителя и кладки лицевого слоя. Обычно несущая и лицевая стены возводятся параллельно. Но нынешние технологии позволяют разделить строительство дома на этапы: в одном сезоне можно поставить несущую стену, а в следующем – утеплить ее и возвести лицевой слой.

Несущий и отделочный слои связаны между собой гибкими или жесткими связями. Гибкие связи представляют собой прутья (диаметром 4–8 мм) или узкие пластины из нержавеющей стали. Как правило, используется не менее двух гибких связей на 1 м 2 кладки стены. Вместе с тем следует отметить, что связи являются мостиками холода и снижают сопротивление теплопередаче всей ограждающей конструкции. В связи с этим в последнее время все большее распространение получают связи на основе стеклопластика. Этот материал обладает хорошими показателями сопротивления теплопроводности и решает проблему мостиков холода.

Как правило, гибкие связи укладываются в швах во время возведения несущей стены. Затем в них продевается слой утеплителя и крепится к стене при помощи тарельчатых пружинных шайб. Вместе с тем существует возможность монтажа связей уже после кладки несущего слоя. В этом случае в стене сверлятся отверстия, в которых на дюбелях крепятся связи.

Первый вариант является более дешевым и быстрым, поэтому используется чаще. Однако при втором можно достичь большей точности совпадения связей со швами кладки лицевого слоя.

Отдельно стоит сказать о так называемой колодцевой кладке, при которой наружный и несущий слои стены связаны жесткими связями – кирпичом. В данном случае через образующиеся мостики холода теряется значительное количество тепла. Кроме того, колодцевая кладка используется в том случае, если несущая стена и лицевая запроектированы из одного и того же материала. Тем не менее, с появлением на рынке новых эффективных стеновых материалов колодцевая кладка в последнее время используется реже.

Строим самый лучший дом или какой должна быть толщина стен дома из кирпича

Возведение дома из кирпича — самая трудоемкая и затратная задача, но это того стоит, учитывая, что такая кладка имеет высокие функциональные свойства, эксплуатация которых подразумевает срок до 100 лет. Но, чтобы перестраивать дом пришлось только вашим детям уже в пенсионный период, то надо позаботиться о том, чтобы толщина стен кирпичного дома была соответствующей.

Согласно СНиПу толщина стен кирпичного дома должна составлять 70 см. В среднем по стране строятся дома с толщиной стен 50 см. Но минимальная толщина стен из кирпича составляет 25 см — это при использовании одинарного формата. Как же достичь необходимых параметров?

Укладка утеплителя, пароизоляции и звукоизоляции способствует увеличению толщины стен. Стена из полнотелого кирпича может достигать 38 см при кладке полуторным кирпичом. Но это считается не целесообразным, так как требуется большое количество строительного материала и возведение массивного фундамента. Кладка из полнотелого кирпича может производится с образованием «колодцев» или расширенных швов при использовании теплых кладочных растворов и прокладывая слой утеплителя.

Толщина стен из пустотелого кирпича

Чтобы снизить нагрузку на на фундамент и несущую конструкцию, рекомендуется кладка из пустотелого кирпича щелевого типа. Сама кладка может иметь небольшую толщину, но с применением комбинированного варианта в виде теплоизоляционного слоя и отделки облицовочным материалом, можно достичь необходимой толщины стен. Пустотелый кирпич обладает свойствами не допускать потерю тепла в доме, поэтому толщина такой кладки может быть небольшой.

Толщина стен из керамического кирпича

Толщина любой стены всегда должна быть кратна половине ширины кирпича и представляет собой такую пропорцию при кладке:

  • 0,5 кирпича — стена 12 см;
  • 1 кирпич — стена 25 см;
  • 1,5 кирпича — стена 38 см;
  • 2 кирпича — стена 51 см;
  • 2,5 кирпича — стена 64 см.

Выбор толщины кладки зависит от климатических условий местности, где будет возведен дом. Если температура в регионе часто опускается ниже 30 градусов, то наружные стены в обязательном порядке должны иметь толщину в 64 см. При этом перегородки внутри помещений могут быть и 12 см.

Толщина стен из облицовочного кирпича

Толщина стен из облицовочного кирпича составляет 12 см. И решение об отделке своего дома таким материалом надо принимать заранее, так как для этого необходимо усилить фундамент с обязательной его шириной в 25-30 см. Тем не менее укладка облицовочного кирпича лучше всего защищает дом от теплопотери и негативного воздействия природных явлений, создавая благоприятный микроклимат в доме и поддерживая оптимальную температуру в помещении.

Толщина стен кирпичного дома во многом зависит от технических характеристик утеплителя. Несмотря на многие сложности, именно такую недвижимость предпочитают многие люди. Кирпичные дома отличаются высоким уровнем долговечности и лучше всего противостоят огню, в отличие от других материалов.

Как раccчитать толщину кирпичной стены дома

Прежде чем приступить к рассмотрению вопросов, связанных с расчетом толщины кирпичной стены дома, необходимо понимать, для чего это нужно. Например, почему нельзя возвести наружную стену толщиной в полкирпича, ведь кирпич такой твердый и прочный?

Очень многие неспециалисты не имеют даже базовых представлений о характеристиках ограждающих конструкций, тем не менее, берутся за самостоятельное строительство.

В этой статье мы рассмотрим два основных критерия расчета толщины кирпичных стен – несущие нагрузки и сопротивление теплопередаче. Но прежде чем погрузиться в скучные цифры и формулы, позвольте разъяснить некоторые моменты простым языком.

Стены дома в зависимости от их места в схеме проекта могут быть несущими, самонесущими, ненесущими и перегородками. Несущие стены выполняют ограждающую функцию, а также служат опорами плитам или балкам перекрытия или конструкции крыши. Толщина несущих кирпичных стен не может быть менее чем в один кирпич (250 мм). Большинство современных домов строится со стенами в один или 1,5 кирпича. Проектов частных домов, где бы требовались стены толще 1,5 кирпича, по логике вещей не должно существовать. Поэтому выбор толщины наружной кирпичной стены по большому счету – дело решенное. Если выбирать между толщиной в один кирпич или в полтора, то с чисто технической точки зрения для коттеджа высотой 1-2 этажа кирпичная стена толщиной 250 мм (в один кирпич марки прочности М50, М75, М100) будет соответствовать расчетам несущих нагрузок. Перестраховываться не стоит, поскольку расчеты уже учитывают снеговые, ветровые нагрузки и множество коэффициентов, обеспечивающих кирпичной стене достаточный запас прочности. Однако есть очень важный момент, действительно влияющий на толщину кирпичной стены – устойчивость.

Все когда-то в детстве играли кубиками, и замечали, что чем больше поставить кубиков друг на друга, тем менее устойчивой становится колонна из них. Элементарные законы физики, действующие на кубики, точно так же действуют и на кирпичную стену, ибо принцип кладки один и тот же. Очевидно, что между толщиной стены и ее высотой есть некая зависимость, обеспечивающая устойчивость конструкции. Вот об этой зависимости мы и поговорим в первой половине этой статьи.

Устойчивость стен, равно как и строительные нормативы несущих и прочих нагрузок, подробно описана в СНиП II-22-81 «Каменные и армокаменные конструкции». Эти нормативы являются пособием для конструкторов, и для «непосвященных» могут показаться довольно сложными для понимания. Так оно и есть, ведь чтобы стать инженером, необходимо учиться минимум четыре года. Тут можно было бы сослаться на «обращайтесь за расчетами к специалистам» и ставить точку. Однако, благодаря возможностям информационной паутины, сегодня почти каждый при желании может разобраться в самых сложных вопросах.

Для начала попробуем разобраться в вопросе устойчивости кирпичной стены. Если стена высокая и длинная, то толщины в один кирпич будет мало. В то же время, лишняя перестраховка может повысить стоимость коробки в 1,5-2 раза. А это сегодня деньги немалые. Чтобы избежать разрушения стены или лишних финансовых трат обратимся к математическому расчету.

Все необходимые данные для расчета устойчивости стены имеются в соответствующих таблицах СНиП II-22-81. На конкретном примере рассмотрим, как определить, достаточна ли устойчивость наружной несущей кирпичной (М50) стены на растворе М25 толщиной в 1,5 кирпича (0,38 м), высотой 3 м и длиной 6 м с двумя оконными проемами 1,2×1,2 м.

Обратившись к таблице 26 (табл. вверху), находим, что наша стена относится к I-ой группе кладки и подходит под описание пункта 7 данной таблицы. Дальше нам надо узнать допустимое соотношение высоты стены к ее толщине с учетом марки кладочного раствора. Искомый параметр β является отношением высоты стены к ее толщине (β=Н/h). В соответствии с данными табл. 28 β = 22. Однако наша стена не закреплена в верхнем сечении (иначе расчет требовался только по прочности), поэтому согласно п. 6.20 значение β следует уменьшить на 30%. Таким образом, β равно уже не 22, а 15,4.

Переходим к определению поправочных коэффициентов из таблицы 29, которая поможет найти совокупный коэффициент k:

  • для стены толщиной 38 см, не несущей нагрузки, k1=1,2;
  • k2=√Аn/Аb, где An – площадь горизонтального сечения стены с учетом оконных проемов, Аb – площадь горизонтального сечения без учета окон. В нашем случае, An= 0,38×6=2,28 м², а Аb=0,38×(6-1,2×2)=1,37 м². Выполняем вычисление: k2=√1,37/2,28=0,78;
  • k4 для стены высотой 3 м равен 0,9.

Путем перемножения всех поправочных коэффициентов находим общий коэффициент k= 1,2×0,78×0,9=0,84. После учета совокупности поправочных коэффициентов β=0,84×15,4=12,93. Это означает, что допустимое соотношение стены с требуемыми параметрами в нашем случае составляет 12,98. Имеющееся соотношение H/h = 3:0,38 = 7,89. Это меньше допустимого отношения 12,98, и это означает, что наша стена будет достаточно устойчивой, т.к. выполняется условие H/h

Нормативное тепловое сопротивление стен домов

Сопротивление теплопередаче R (термическое сопротивление, м²•°С/Вт) слоя ограждающей конструкции определяется по формуле:

R=δ/λ, где

δ – толщина слоя (м), λ – коэффициент теплопроводности материала Вт/(м•°С).

Чтобы получить общее термическое сопротивление многослойной ограждающей конструкции, необходимо сложить термические сопротивления всех слоев структуры стены. Рассмотрим следующее на конкретном примере.

Задача состоит в том, чтобы определить, какая толщина должна быть у стены из силикатного кирпича, чтобы ее сопротивление теплопроводности соответствовало СНиП II-3-79 для наиболее низкого норматива 1,2 м²•°С/Вт. Коэффициент теплопроводности силикатного кирпича составляет 0,35-0,7 Вт/(м•°С) в зависимости от плотности. Допустим наш материал имеет коэффициент теплопроводности 0,7. Таким образом, получаем уравнение с одной неизвестной δ=Rλ. Подставляем значения и решаем: δ=1,2×0,7=0,84 м.

Теперь вычислим, каким слоем пенополистирола нужно утеплить стену из силикатного кирпича толщиной 25 см, чтобы выйти на показатель 1,2 м²•°С/Вт . Коэффициент теплопроводности пенополистирола (ПСБ 25) не более 0,039 Вт/(м•°С), а у силикатного кирпича 0,7 Вт/(м•°С).

1) определяем R кирпичного слоя: R=0,25:0,7=0,35;

2) вычисляем недостающее тепловое сопротивление: 1,2-0,35=0,85;

3) определяем толщину пенополистирола, необходимую для получения теплового сопротивления равного 0,85 м²•°С/Вт: 0,85×0,039=0,033 м.

Таки образом, установлено, что для приведения стены в один кирпич к нормативному тепловому сопротивлению (1,2 м²•°С/Вт) потребуется утепление слоем пенополистирола толщиной 3,3 см.

Используя данную методику, вы сможете самостоятельно рассчитывать тепловое сопротивление стен с учетом региона строительства.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector